Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates.

Identifieur interne : 000857 ( Main/Exploration ); précédent : 000856; suivant : 000858

Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates.

Auteurs : Jyotsna Kumar [États-Unis] ; Neila L. Kline [États-Unis] ; Daniel C. Masison [Danemark]

Source :

RBID : pubmed:30224519

Descripteurs français

English descriptors

Abstract

Polyglutamine (polyQ) aggregates are associated with pathology in protein-folding diseases and with toxicity in the yeast Saccharomyces cerevisiae Protection from polyQ toxicity in yeast by human DnaJB6 coincides with sequestration of aggregates. Gathering of misfolded proteins into deposition sites by protein quality control (PQC) factors has led to the view that PQC processes protect cells by spatially segregating toxic aggregates. Whether DnaJB6 depends on this machinery to sequester polyQ aggregates, if this sequestration is needed for DnaJB6 to protect cells, and the identity of the deposition site are unknown. Here, we found DnaJB6-driven deposits share characteristics with perivacuolar insoluble protein deposition sites (IPODs). Binding of DnaJB6 to aggregates was necessary, but not enough, for detoxification. Focal formation required a DnaJB6-Hsp70 interaction and actin, polyQ could be detoxified without sequestration, and segregation of aggregates alone was not protective. Our findings suggest DnaJB6 binds to smaller polyQ aggregates to block their toxicity. Assembly and segregation of detoxified aggregates are driven by an Hsp70- and actin-dependent process. Our findings show sequestration of aggregates is not the primary mechanism by which DnaJB6 suppresses toxicity and raise questions regarding how and when misfolded proteins are detoxified during spatial segregation.

DOI: 10.1128/MCB.00437-18
PubMed: 30224519
PubMed Central: PMC6234286


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates.</title>
<author>
<name sortKey="Kumar, Jyotsna" sort="Kumar, Jyotsna" uniqKey="Kumar J" first="Jyotsna" last="Kumar">Jyotsna Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kline, Neila L" sort="Kline, Neila L" uniqKey="Kline N" first="Neila L" last="Kline">Neila L. Kline</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Masison, Daniel C" sort="Masison, Daniel C" uniqKey="Masison D" first="Daniel C" last="Masison">Daniel C. Masison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA danielmas@niddk.nih.gov.</nlm:affiliation>
<country wicri:rule="url">Danemark</country>
<wicri:regionArea>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<wicri:noRegion>Maryland</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30224519</idno>
<idno type="pmid">30224519</idno>
<idno type="doi">10.1128/MCB.00437-18</idno>
<idno type="pmc">PMC6234286</idno>
<idno type="wicri:Area/Main/Corpus">000700</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000700</idno>
<idno type="wicri:Area/Main/Curation">000700</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000700</idno>
<idno type="wicri:Area/Main/Exploration">000700</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates.</title>
<author>
<name sortKey="Kumar, Jyotsna" sort="Kumar, Jyotsna" uniqKey="Kumar J" first="Jyotsna" last="Kumar">Jyotsna Kumar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kline, Neila L" sort="Kline, Neila L" uniqKey="Kline N" first="Neila L" last="Kline">Neila L. Kline</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Masison, Daniel C" sort="Masison, Daniel C" uniqKey="Masison D" first="Daniel C" last="Masison">Daniel C. Masison</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA danielmas@niddk.nih.gov.</nlm:affiliation>
<country wicri:rule="url">Danemark</country>
<wicri:regionArea>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland</wicri:regionArea>
<wicri:noRegion>Maryland</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amyloid (metabolism)</term>
<term>HSP40 Heat-Shock Proteins (metabolism)</term>
<term>HSP70 Heat-Shock Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Nerve Tissue Proteins (metabolism)</term>
<term>Peptides (metabolism)</term>
<term>Protein Aggregates (physiology)</term>
<term>Protein Binding (physiology)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrégats de protéines (physiologie)</term>
<term>Amyloïde (métabolisme)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (physiologie)</term>
<term>Peptides (métabolisme)</term>
<term>Protéines de tissu nerveux (métabolisme)</term>
<term>Protéines du choc thermique HSP40 (métabolisme)</term>
<term>Protéines du choc thermique HSP70 (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amyloid</term>
<term>HSP40 Heat-Shock Proteins</term>
<term>HSP70 Heat-Shock Proteins</term>
<term>Molecular Chaperones</term>
<term>Nerve Tissue Proteins</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Protein Aggregates</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amyloïde</term>
<term>Chaperons moléculaires</term>
<term>Peptides</term>
<term>Protéines de tissu nerveux</term>
<term>Protéines du choc thermique HSP40</term>
<term>Protéines du choc thermique HSP70</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Agrégats de protéines</term>
<term>Liaison aux protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polyglutamine (polyQ) aggregates are associated with pathology in protein-folding diseases and with toxicity in the yeast
<i>Saccharomyces cerevisiae</i>
Protection from polyQ toxicity in yeast by human DnaJB6 coincides with sequestration of aggregates. Gathering of misfolded proteins into deposition sites by protein quality control (PQC) factors has led to the view that PQC processes protect cells by spatially segregating toxic aggregates. Whether DnaJB6 depends on this machinery to sequester polyQ aggregates, if this sequestration is needed for DnaJB6 to protect cells, and the identity of the deposition site are unknown. Here, we found DnaJB6-driven deposits share characteristics with perivacuolar insoluble protein deposition sites (IPODs). Binding of DnaJB6 to aggregates was necessary, but not enough, for detoxification. Focal formation required a DnaJB6-Hsp70 interaction and actin, polyQ could be detoxified without sequestration, and segregation of aggregates alone was not protective. Our findings suggest DnaJB6 binds to smaller polyQ aggregates to block their toxicity. Assembly and segregation of detoxified aggregates are driven by an Hsp70- and actin-dependent process. Our findings show sequestration of aggregates is not the primary mechanism by which DnaJB6 suppresses toxicity and raise questions regarding how and when misfolded proteins are detoxified during spatial segregation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30224519</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00437-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.00437-18</ELocationID>
<Abstract>
<AbstractText>Polyglutamine (polyQ) aggregates are associated with pathology in protein-folding diseases and with toxicity in the yeast
<i>Saccharomyces cerevisiae</i>
Protection from polyQ toxicity in yeast by human DnaJB6 coincides with sequestration of aggregates. Gathering of misfolded proteins into deposition sites by protein quality control (PQC) factors has led to the view that PQC processes protect cells by spatially segregating toxic aggregates. Whether DnaJB6 depends on this machinery to sequester polyQ aggregates, if this sequestration is needed for DnaJB6 to protect cells, and the identity of the deposition site are unknown. Here, we found DnaJB6-driven deposits share characteristics with perivacuolar insoluble protein deposition sites (IPODs). Binding of DnaJB6 to aggregates was necessary, but not enough, for detoxification. Focal formation required a DnaJB6-Hsp70 interaction and actin, polyQ could be detoxified without sequestration, and segregation of aggregates alone was not protective. Our findings suggest DnaJB6 binds to smaller polyQ aggregates to block their toxicity. Assembly and segregation of detoxified aggregates are driven by an Hsp70- and actin-dependent process. Our findings show sequestration of aggregates is not the primary mechanism by which DnaJB6 suppresses toxicity and raise questions regarding how and when misfolded proteins are detoxified during spatial segregation.</AbstractText>
<CopyrightInformation>This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Kumar</LastName>
<ForeName>Jyotsna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Kline</LastName>
<ForeName>Neila L</ForeName>
<Initials>NL</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Masison</LastName>
<ForeName>Daniel C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA danielmas@niddk.nih.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000682">Amyloid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C485565">DNAJB6 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050956">HSP40 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018840">HSP70 Heat-Shock Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009419">Nerve Tissue Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D066329">Protein Aggregates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>26700-71-0</RegistryNumber>
<NameOfSubstance UI="C097188">polyglutamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000682" MajorTopicYN="N">Amyloid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050956" MajorTopicYN="N">HSP40 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018840" MajorTopicYN="N">HSP70 Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009419" MajorTopicYN="N">Nerve Tissue Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066329" MajorTopicYN="N">Protein Aggregates</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DnaJB6</Keyword>
<Keyword MajorTopicYN="Y">Huntington's disease</Keyword>
<Keyword MajorTopicYN="Y">J-protein</Keyword>
<Keyword MajorTopicYN="Y">amyloid</Keyword>
<Keyword MajorTopicYN="Y">heat shock protein (HSP)</Keyword>
<Keyword MajorTopicYN="Y">molecular chaperone</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30224519</ArticleId>
<ArticleId IdType="pii">MCB.00437-18</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00437-18</ArticleId>
<ArticleId IdType="pmc">PMC6234286</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2016 Feb 19;291(8):4035-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26702057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 14;288(24):17225-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2014 Mar;19(2):227-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23904097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Jul;188(3):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21555396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Jun 10;157(6):997-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12058016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9758-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23703910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 May 22;13(5):e1006805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28531192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:97-122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28489421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Oct;156(2):559-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Dec;23(4):425-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10581028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Nov 7;289(45):31066-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25217638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Oct 22;27(20):2725-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18833194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol Commun. 2015 Jul 25;3:44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26205529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 Sep 30;12(9):e1006324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27689885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2012 Mar;71(3):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22334415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2012 Feb 26;44(4):450-5, S1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22366786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11045-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Jul 27;106(2):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2012 Dec;86(6):1531-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2015 Apr 10;427(7):1632-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25687964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Feb 12;37(3):355-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Physiol Biochem Pharmacol. 2006;156:1-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16634144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2016 Sep 01;8(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27481532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Mar 2;293(9):3104-3117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29330300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Oct;15(10):1231-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Mar 26;8(1):5199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29581438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2013 Dec;24(23):3588-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24109600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prion. 2014 Mar-Apr;8(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24819071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Sep 15;63(6):951-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27570076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2711-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24938787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Aug;23(16):3041-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 3;154(1):134-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 28;454(7208):1088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(6):954-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25998947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2009 Feb;23(2):451-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EBioMedicine. 2016 Apr;6:42-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27211547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2015 Mar 12;34(6):778-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25672362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2015 Apr 10;427(7):1564-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25681695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2012 Sep 21;7(9):1556-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22709427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18480252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Indian Acad Neurol. 2015 Apr-Jun;18(2):138-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Nov 14;195(4):617-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2000 Sep 1;9(14):2197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10958659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prion. 2018 Jan 2;12(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29308690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Nov;19(11):7751-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16412-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12189209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Apr 21;62(2):272-283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27151442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7841-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jul 6;287(28):23346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22573320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Kumar, Jyotsna" sort="Kumar, Jyotsna" uniqKey="Kumar J" first="Jyotsna" last="Kumar">Jyotsna Kumar</name>
</region>
<name sortKey="Kline, Neila L" sort="Kline, Neila L" uniqKey="Kline N" first="Neila L" last="Kline">Neila L. Kline</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Masison, Daniel C" sort="Masison, Daniel C" uniqKey="Masison D" first="Daniel C" last="Masison">Daniel C. Masison</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000857 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000857 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30224519
   |texte=   Human DnaJB6 Antiamyloid Chaperone Protects Yeast from Polyglutamine Toxicity Separately from Spatial Segregation of Aggregates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30224519" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020